/* * Copyright the original author or authors. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ package de.schildbach.pte; import de.schildbach.pte.dto.Point; /** * @author Andreas Schildbach */ public final class LocationUtils { public static float computeDistance(final Point p1, final Point p2) { return computeDistance(p1.getLatAsDouble(), p1.getLonAsDouble(), p2.getLatAsDouble(), p2.getLonAsDouble()); } /** * @param lat1 * latitude of origin point in decimal degrees * @param lon1 * longitude of origin point in decimal degrees * @param lat2 * latitude of destination point in decimal degrees * @param lon2 * longitude of destination point in decimal degrees * * @return distance in meters */ public static float computeDistance(double lat1, double lon1, double lat2, double lon2) { // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf // using the "Inverse Formula" (section 4) final int MAXITERS = 20; // Convert lat/long to radians lat1 *= Math.PI / 180.0; lat2 *= Math.PI / 180.0; lon1 *= Math.PI / 180.0; lon2 *= Math.PI / 180.0; final double a = 6378137.0; // WGS84 major axis final double b = 6356752.3142; // WGS84 semi-major axis final double f = (a - b) / a; final double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b); final double L = lon2 - lon1; double A = 0.0; final double U1 = Math.atan((1.0 - f) * Math.tan(lat1)); final double U2 = Math.atan((1.0 - f) * Math.tan(lat2)); final double cosU1 = Math.cos(U1); final double cosU2 = Math.cos(U2); final double sinU1 = Math.sin(U1); final double sinU2 = Math.sin(U2); final double cosU1cosU2 = cosU1 * cosU2; final double sinU1sinU2 = sinU1 * sinU2; double sigma = 0.0; double deltaSigma = 0.0; double cosSqAlpha = 0.0; double cos2SM = 0.0; double cosSigma = 0.0; double sinSigma = 0.0; double cosLambda = 0.0; double sinLambda = 0.0; double lambda = L; // initial guess for (int iter = 0; iter < MAXITERS; iter++) { final double lambdaOrig = lambda; cosLambda = Math.cos(lambda); sinLambda = Math.sin(lambda); final double t1 = cosU2 * sinLambda; final double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda; final double sinSqSigma = t1 * t1 + t2 * t2; // (14) sinSigma = Math.sqrt(sinSqSigma); cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15) sigma = Math.atan2(sinSigma, cosSigma); // (16) final double sinAlpha = (sinSigma == 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma; // (17) cosSqAlpha = 1.0 - sinAlpha * sinAlpha; cos2SM = (cosSqAlpha == 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18) final double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn A = 1 + (uSquared / 16384.0) * // (3) (4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared))); final double B = (uSquared / 1024.0) * // (4) (256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared))); final double C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10) final double cos2SMSq = cos2SM * cos2SM; deltaSigma = B * sinSigma * // (6) (cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq) - (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq))); lambda = L + (1.0 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM))); // (11) final double delta = (lambda - lambdaOrig) / lambda; if (Math.abs(delta) < 1.0e-12) break; } return (float) (b * A * (sigma - deltaSigma)); } }